Generalized Jacobi Weights, Christoffel Functions, and Jacobi Polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Jacobi polynomials/functions and their applications

We introduce a family of generalized Jacobi polynomials/functions with indexes α,β ∈ R which are mutually orthogonal with respect to the corresponding Jacobi weights and which inherit selected important properties of the classical Jacobi polynomials. We establish their basic approximation properties in suitably weighted Sobolev spaces. As an example of their applications, we show that the gener...

متن کامل

Multivariate Jacobi polynomials with singular weights

First we give a compact treatment of the Jacobi polynomials on a simplex in IR which exploits and emphasizes the symmetries that exist. This includes the various ways that they can be defined: via orthogonality conditions, as a hypergeometric series, as eigenfunctions of an elliptic pde, as eigenfunctions of a positive linear operator, and through conditions on the Bernstein–Bézier form. We the...

متن کامل

Generating Functions of Jacobi Polynomials

Multiplicative renormalization method (MRM) for deriving generating functions of orthogonal polynomials is introduced by Asai–Kubo– Kuo. They and Namli gave complete lists of MRM-applicable measures for MRM-factors h(x) = ex and (1 − x)−κ. In this paper, MRM-factors h(x) for which the beta distribution B(p, q) over [0, 1] is MRM-applicable are determined. In other words, all generating function...

متن کامل

A Family of Generalized Jacobi Polynomials

The family of orthogonal polynomials corresponding to a generalized Jacobi weight function was considered by Wheeler and Gautschi who derived recurrence relations, both for the related Chebyshev moments and for the associated orthogonal polynomials. We obtain an explicit representation of these polynomials, from which the recurrence relation can be derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Mathematical Analysis

سال: 1994

ISSN: 0036-1410,1095-7154

DOI: 10.1137/s0036141092236863